Схема электрическая принципиальная зарядки для нокиа. Ремонт и доработка зарядного устройства сотовых телефонов NOKIA


Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны - если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи - но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.


Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт - тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних - положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает... То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ - поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора - то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II - генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока - выходное напряжение гуляет в пределах 15...25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2


Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор, резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 - как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении - 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным - идеально BYV26C, чуть хуже - UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250...350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 - она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10...20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому - для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II - 30 витков тем же проводом, обмотка III - 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник - стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.
Скачать: Основные схемы импульсных сетевых адаптеров для зарядки телефонов
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

1. Лирическое отступление

Вероятно, в мире осталось не так много людей, которым не известна финская компания NOKIA. Одним из основных видов деятельности которой является разработка, производство и реализация сотовых телефонов.

Как и любая другая компания с известным именем, она является «лакомым кусочком» для различного рода мелких (в основном китайских) производителей, желающих продавать свою продукцию под чужой маркой. Благодаря чему в новостях достаточно часто мелькают сообщения о попытках реализации (порой более чем успешных) поддельной электронной аппаратуры. Подобная деятельность является незаконной и негативным образом влияет как на имидж оригинального производителя, так и на его финансовое состояние.

Однако в подавляющем большинстве случаев в первую очередь страдают из-за этого рядовые потребители, к которым относится и ваш покорный слуга. Т.к. в истории подобных фальсификаций практически не зафиксировано случаев, когда качество поддельной продукции не уступало оригинальной. При этом результатом использования поддельной продукции может стать не только моральный или финансовый ущерб, но и нанесения вреда здоровью.

Не секрет, что чаще всего производители «подделок» обращают свое внимание на фирменные расходные материалы и аксессуары. Т.к. с одной стороны производство таких товаров не требует больших технических и производственных ресурсов, а с другой – позволяет получать ощутимую прибыль. Как за счет более низкой себестоимости по сравнению с оригинальными товарами (что негативным образом сказывается на качестве), так и за счет подделываемого «бренда», т.к. даже при сравнимом качестве товары известных компаний стоят дороже. На рынке устройств мобильной связи первое место по количеству подделок, пожалуй, занимают аккумуляторные батареи. Долго рассказывать о негативных последствиях такого положения вещей, думаю, не стоит. Воспламенившаяся батарея может привести к чему угодно, от пожара до серьезных травм. Однако сегодня речь пойдет не о них, а о смежной с ними группе товаров – зарядных устройствах.

Когда вы покупаете мобильный телефон, в 99.9% случаев он уже укомплектован сетевым зарядным устройством. И все было бы замечательно, если бы им не надо было пользоваться:). А раз им надо пользоваться, то существует вероятность того, что оно выйдет из строя. Его можно потерять, домашний любимец может перегрызть кабель и т.д.

Кроме того, удобно, когда зарядных устройств имеется несколько. Одно можно использовать дома, другое на работе, третье забросить на дачу. Это позволит зарядить телефон, независимо от того, где вы находитесь. Думаю, всем из собственного опыта известно, что телефон имеет свойство разрядиться в самый неподходящий момент:).

Я обычно использую два зарядных устройства, одно дома и второе на работе. Одно зарядное устройство прилагается к телефону, а второе можно купить. Здесь есть два варианта – купить оригинальное зарядное устройство и не оригинальное (не поддельное, а просто произведенное и продаваемое под маркой другой компании), совместимое с вашей моделью телефона. Оригинальное зарядное устройство гарантирует вам полную совместимость с мобильным телефоном и качество, однако его не всегда можно найти в продаже. А кроме того оно может стоить существенно дороже не оригинального (хотя и не всегда). Если же в продаже имеется как оригинальное, так и не оригинальное зарядное устройство, то выбор за покупателем. Можно сэкономить немного денег, а можно поддержать финансово «любимого» производителя:). Я за редким исключением (к мобильным телефонам это не относится) выберу оригинальное зарядное устройство.

2. Факты

В настоящее время я пользуюсь мобильным телефоном NOKIA E50. Практически сразу после покупки телефона я озаботился вопросом покупки второго зарядного устройства. В комплекте с телефоном прилагалось зарядное устройство модели AC-4E. Воспользовавшись услугами одного из многочисленных интернет-магазинов, реализующих мобильные телефоны и аксессуары, я заказал себе аналогичное зарядное устройство, предварительно уточнив по телефону, что продаваемые зарядные устройства являются оригинальными и продаются в соответствующей упаковке. При покупке я внешне осмотрел устройство, коробка соответствовала изображению на сайте NOKIA, а само зарядное устройство в точности соответствовало уже имеющемуся. Я оставил его на работе и пользовался время от времени для подзарядки телефона. Процесс зарядки происходил медленнее, но т.к. разница была несущественной (~75 минут против 50), то я не стал заострять на этом внимание. В один прекрасный момент (через ~3.5 месяца) это зарядное устройство сгорело (с соответствующими шумовыми и дымовыми эффектами). Раздался резкий щелчок, и запахло жженым пластиком.

Т.к. гарантийный талон я найти не смог, да и времени на реализацию гарантийных обязательств тогда не было, я решил купить новое зарядное устройство, а это из любопытства вскрыл. Кстати, разобрать зарядное устройство NOKIA – задача не из простых, хотя в отличие от подавляющего большинства зарядных устройств других производителей оно предусматривает возможность разборки. Все дело в использовании винтов с оригинальной головкой. Ни обычная отвертка, ни крестовидная, ни звездочка, ни шестигранник вам не помогут.

В продаже мне такие отвертки пока не попадались, возможно, в специализированном магазине, торгующем запчастями для мобильных телефонов, они и есть. В результате, приложив серьезные физические усилия, я выкрутил винты при помощи плоской отвертки подходящего размера, но головки винтов при этом были сильно повреждены. Так что говорить о возможности безболезненно разобрать зарядное устройство не приходится. Что, в общем, хорошо, т.к. с одной стороны позволяет производить оперативный ремонт устройства, а с другой мешает конечному пользователю разобрать его во избежание получения травм. Представившееся мне зрелище неприятно поразило: печатная плата зарядного устройства была частично покрыта копотью от обгоревшего резистора, одна из дорожек на печатной плате перегорела. А больше всего поразило низкое качество схемотехнического решения, оно напоминало самые дешевые китайские зарядные устройства, так называемые «ноу нэйм».

Т.к. время поджимало, я посмотрел список аксессуаров на сайте NOKIA и выбрал новую модель зарядного устройства, AC-5E, совместимую с моим телефоном. Оно привлекло меня исключительной компактностью, что немаловажно, если зарядное устройство нужно взять с собой в командировку или отпуск. Затем я обратился в ближайший ко мне салон связи компании «Евросеть» и приобрел там вышеуказанное зарядное устройство.


Оно продавалось в оригинальной упаковке с логотипом NOKIA и внешне полностью соответствовало изображению на сайте компании. На корпусе также присутствовал логотип сертификации «Ростест». Вечером я вернулся домой с работы и поставил телефон заряжаться, через 20 минут история повторилась. Раздался щелчок, запахло жженым пластиком. Зарядное устройство вышло из строя. Я уже начинал сомневаться, все ли в порядке с мобильным телефоном, возможно, он является причиной этих фейерверков? Но я не стал обращать на это внимание. В конце концов, все устройства делятся на две категории – те, которые уже вышли из строя, и те, с которыми это вот-вот произойдет:). На следующий день я вернулся в салон и заменил вышедшее из строя зарядное устройство на новое. После чего поставил телефон на зарядку со старым (комплектным) зарядным устройством. Зарядка прошла как обычно, никаких аномалий я не заметил. Через несколько дней я поставил телефон заряжаться, воспользовавшись новым зарядным устройством АС-5Е. Батарея телефона была практически полностью разряжена, обычно процесс зарядки в таком случае занимает около 50-ти минут. Через час я проверил телефон, процесс зарядки все еще продолжался. Само зарядное устройство при этом ощутимо нагрелось, чего я не наблюдал в случае использования комплектного АС-4Е.

Т.к. я не собирался никуда выходить, то решил не отключать телефон и подождать, пока он полностью зарядится. Когда процесс зарядки заканчивается, телефон издает короткий гудок, и индикатор батареи останавливается в верхней точке. Гудок этот раздался через 3.5 часа после того, как я подключил телефон к зарядному устройству.

Любопытство победило, и я разобрал новое зарядное устройство. Используемое в нем схемотехническое решение больше всего напоминало мне о канувшем в небытие зарядном устройстве АС-4Е и его предполагаемых дешевых китайских аналогах. Дальше я уже не мог терпеть и разобрал зарядное устройство АС-4Е, которым был укомплектован мой телефон. Должен сказать, увиденное меня с одной стороны обрадовало – качество этого устройства было очень хорошим, а с другой – огорчило, т.к. это означало, что все приобретенные мной зарядные устройства, скорее всего, являются подделками.

Давайте рассмотрим зарядные устройства поближе.

Примечание: в настоящее время функция зарядки аккумуляторной батареи мобильного телефона возложена на сам телефон и частично на батарею. В связи с чем зарядное устройство является обычным блоком питания с необходимыми в каждом конкретном случае входными/выходными характеристиками.

3. Оригинальное зарядное устройство NOKIA AC-4E



Маркировка




Разъем питания

На нижней части корпуса можно увидеть название модели, характеристики, штрих-код и серийный номер устройства. Все надписи нанесены четко, пластик имеет приятную шероховатую на ощупь поверхность. На внутренних поверхностях обеих частей корпуса можно увидеть логотип NOKIA.


Печатная плата, вид сверху


Печатная плата, вид снизу

Односторонняя печатная плата выполнена аккуратно, все детали присутствуют, используется регулятор напряжения (небольшая микросхема на нижней стороне платы). Применяются как обычные, так и SMD-компоненты. На плате присутствует маркировка “Friwo”, это название компании, которая произвела данные зарядные устройства по заказу NOKIA.

Судя по информации на сайте, это достаточно большая компания, специализирующаяся на производстве блоков питания и зарядных устройств. Для того чтобы можно было сравнить две «версии» имеющихся у меня зарядных устройств АС-4Е, я крупным планом сфотографировал корпус зарядного устройства снаружи и внутри, маркировку, присутствующую на корпусе, печатную плату и разъем питания. То же самое я проделаю и для оставшихся двух устройств.

4. Зарядное устройство NOKIA AC-4E


Зарядное устройство NOKIA AC-4E, общий вид


Маркировка


Внутренняя поверхность верхней части


Внутренняя поверхность нижней части


Разъем питания

Как видите, внешне отличить это зарядное устройство от предыдущего нельзя. То же самое покрытие, в точности такой же разъем, та же маркировка на нижней части корпуса, штрих-код и номер. Те же винты с оригинальной головкой. В общем, придраться не к чему. Несколько иное впечатление складывается, если заглянуть внутрь. Нижняя часть корпуса практически аналогична оригинальному зарядному устройству. Верхняя часть не содержит логотипа NOKIA на внутренней стороне.


Печатная плата, вид сверху


Печатная плата, вид снизу

Печатная плата выполнена в целом аккуратно, но схемотехническое решение более примитивное. SMD-элементы не используются, маркировка производителя на плате отсутствует. По сути, это один из простейших вариантов импульсного блока питания.

5. Зарядное устройство NOKIA AC-5E


Зарядное устройство NOKIA AC-5E, общий вид


Маркировка


Верхняя крышка


Разъем питания

Аккуратный и компактный корпус, в точности такой же кабель питания, что и у оригинального АС-4Е, с хомутом-липучкой для фиксации кабеля в сложенном виде. Все надписи нанесены четко – название модели, логотип NOKIA, характеристики и штрих-код с номером. Внутри мы видим плату, очень напоминающую «бюджетный» вариант адаптера АС-4Е. То же отсутствие маркировки производителя, то же примитивное схемотехническое решение (однако в данном случае есть отличия, о чем поговорим ниже).

Что касается отсутствия маркировки производителя, то это крайне странно, т.к. на корпусе устройства можно увидеть небольшую надпись ASTEC. Это название крупной компании, производящей блоки питания по заказу многих производителей мобильных телефонов. Компания ASTEC входит в группу компаний EMERSON.

6. Зарядные устройства других производителей

Для того чтобы можно было сравнить продукцию ASTEC с имеющимся зарядным устройством NOKIA AC-5E, я разобрал еще два имеющихся у меня оригинальных зарядных устройства, одно из них поставлялось в комплекте с телефоном Siemens С65, а второе – в комплекте с телефоном Motorola V3 RAZR.


Печатная плата зарядного устройства Siemens, вид сверху


Печатная плата зарядного устройства Siemens, вид снизу

Характеристики зарядного устройства Siemens – 5 В, 350 мА.


Печатная плата зарядного устройства Motorola, вид сверху


Печатная плата зарядного устройства Motorola, вид снизу

Характеристики зарядного устройства Motorola – 5 В, 550 мА.

Оба эти устройства произведены компанией ASTEC, о чем гласит маркировка как на самих зарядных устройствах, так и на печатных платах устройств. Как видите, платы выполнены очень аккуратно, используются SMD-элементы. Присутствует маркировка производителя.

7. Полевые испытания

Вернемся к зарядному устройству NOKIA AC-5E. Единственная причина, по которой зарядка телефона с его использованием могла длиться так долго, – несоответствие заявленным характеристикам, а именно малый ток. На корпусе устройства обозначено, что оно обеспечивает ток 800 мА при напряжении 5 В. Проверим при помощи мультиметра, какой ток потребляет телефон в процессе зарядки при использовании оригинального зарядного устройства АС-4Е и данного АС-5Е.

Для начала измерим напряжение в сети, как видите, оно соответствует нормам – 225 В.


Замеряем напряжение в сети

Для справки: на сайте ASTEC можно просмотреть спецификации зарядных устройств аналогичной группы, они обеспечивают соответствие заданным характеристикам при напряжении сети в диапазоне от 85 до 265 вольт.

Измерим потребляемый ток при использовании оригинального зарядного устройства NOKIA AC-4E. Как видите, потребляемый ток равен 910 мА.


Характеристики, заявленные для этого устройства, – 890 мА. Зарядное устройство работает стабильно и не греется, а значит некоторый запас по току еще имеется.

А теперь измерим потребляемый ток при использовании «бюджетного» варианта зарядного устройства NOKIA AC-5E. Как видите, потребляемый ток равен 330 мА.


Тестирование поддельного зарядного устройства AC-5E

При этом устройство достаточно сильно нагревается в процессе работы. А значит работает на максимуме своих возможностей. Что не удивительно, учитывая примитивное схемотехническое решение и номиналы используемых деталей. Отсюда и увеличившееся в разы время полной зарядки телефона.

8. Оригинальные зарядные устройства NOKIA AC-4E / AC-5E

Для того чтобы расставить все точки над «i», я решил заказать еще два зарядных устройства NOKIA, модели AC-4E и AC-5E в интернет-магазине компании «ULTRA Electronics». Начнем с зарядного устройства NOKIA AC-5E, ведь оригинальную его версию я еще не видел.

Т.к. отличить оригинал от подделки по внешним признакам не получится, то я сразу разбираю зарядное устройство.


Печатная плата NOKIA AC-5E (ориг.), вид сверху


Печатная плата NOKIA AC-5E (ориг.), вид снизу

Как видите, начинка этого зарядного устройства по качеству очень сильно отличается от «подделки» в лучшую сторону. Элементы схемы занимают практически все свободное пространство внутри корпуса зарядного устройства. Схемотехническое решение достаточно «сложное», используются SMD-элементы. На плате присутствует маркировка производителя «ASTEC». Можно уверенно говорить о том, что это оригинальный продукт.


Оригинальное зарядное устройство NOKIA AC-5E, общий вид


Разъем питания NOKIA AC-5E (ориг.)


Маркировка NOKIA AC-5E (ориг.)

Внешний вид оригинального зарядного устройства, маркировка и разъем питания – все в точности скопировано в его поддельной версии.

Перейдем к оставшемуся зарядному устройству NOKIA AC-4E.


Печатная плата NOKIA AC-4E (ориг.), вид сверху


Печатная плата NOKIA AC-4E (ориг.), вид снизу

На печатной плате зарядного устройства присутствует маркировка производителя «Friwo». Схемотехническое решение отличается от рассмотренного ранее оригинального зарядного устройства, его упростили. Это обычная тенденция практически для всех производителей электроники.


Зарядное устройство NOKIA AC-4E, общий вид


Маркировка


Внутренняя поверхность нижней части


Разъем питания

Внешний вид зарядного устройства не изменился.

Несмотря на то, что данное зарядное устройство Nokia AC-4E несомненно является оригинальным, качество попавшего ко мне экземпляра неприятно огорчило. Однако об этом поговорим во второй части «Полевых испытаний».

Внешний вид оригинальной упаковки зарядных устройств Nokia AC-4E и AC-5E

9. Полевые испытания, часть вторая

Проведем тест двух оставшихся зарядных устройств, «обновленной» версии NOKIA AC-4E и NOKIA AC-5E.

На корпусе AC-5E обозначено, что зарядное устройство обеспечивает ток 800 мА при напряжении 5 В. Измерим потребляемый ток.


Тестирование оригинального зарядного устройства AC-5E

Как видите, он равен 880 мА. В процессе работы устройство незначительно нагревается. В данном случае реальные характеристики устройства даже лучше, чем заявленные. Данное зарядное устройство вполне можно рекомендовать как более компактную замену модели AC-4E.

К сожалению, с тестированием «обновленной» версии зарядного устройства AC-4E не все так гладко. Начнем с того, что при подключении к телефону зарядное устройство начало издавать низкочастотный гул, а сам телефон даже и не думал заряжаться. Я разобрал его и решил проверить выходное напряжение непосредственно на контактах печатной платы. Оно оказалось равным 5.8 В, что вполне нормально для работы без нагрузки. В этот момент я обратил внимание на кабель зарядного устройства, он состоит из двух жил в изоляции черного и белого цвета соответственно. Однако провод черного цвета, вопреки моим ожиданиям, был припаян к контакту «+» печатной платы (о чем можно было судить по показаниям мультиметра). Так и оказалось, провода были припаяны неверно.

В данном случае мы имеем дело с бракованным изделием. Видимо, качество выходного контроля продукции у компании «FRIWO» ухудшилось.

После того как я припаял провода надлежащим образом, телефон начал реагировать на подключение зарядного устройства, и можно было замерить потребляемый ток в процессе зарядки.


Тестирование оригинального зарядного устройства AC-4E

Результат – 400 мА при заявленных 890. Интерпретировать такой результат, в общем, бессмысленно, т.к. устройство заведомо было бракованным и подлежало замене.

10. Выводы

Выводы неутешительные. Даже при покупке «оригинального» зарядного устройства в салоне известной компании вы не застрахованы от подделки. Кроме того, внешний вид устройства скопирован настолько качественно, что, даже зная об этой проблеме, отличить его от оригинала практически невозможно. Разве что приходить в магазин вместе с мультиметром.

И немного позитива: как показал практический опыт, сам телефон, как в случае использования поддельного зарядного устройства, так и в случае использования бракованного экземпляра оригинального зарядного устройства с неверной полярностью, остался жив. Неудобства доставляют: увеличившееся время зарядки, частые случаи выхода поддельных зарядных устройств из строя и тот факт, что за подделку пришлось заплатить как за оригинальное зарядное устройство.

Как правило ремонт такого недорогого девайса экономически невыгоден.
Особенно в небедных странах. Средняя цена 5 долларов.
Но бывает такое, что нет лишних денег, но есть время и запчасти.
Нет магазина поблизости. Не позволяют обстоятельства. Тогда речь не идет о цене.

В моем случае все было просто — сломалось одно из двух моих зарядных Nokia AC-3E , друзья принесли мешок поломаных зарядных. Среди них было с десяток фирменных нокиевских зарядок. Грех было не взяться.

Поиски схемы ни к чему не привели, поэтому взял похожую и переделал под AC-3E. По подобной схеме сделано множество зарядных для мобильных телефонов. Как правило разница несущественна. Иногда изменены номиналы, чуть больше или чуть меньше элементов, иногда добавлена индикация заряда. А в основном одно и то же.
Поэтому данное описание и схема пригодятся для ремонта не только AC-3E.

Инструкция по ремонту проста и написана для неспециалистов.
Схема кликабельна и хорошего качества.


ТЕОРИЯ.

Устройство представляет собой блокинг-генератор, работающий в автоколебательном режиме. Питает его однополупериодный выпрямитель (D1, C1) напряжением примерно +300 В. Резистор R1, R2 ограничивает пусковой ток устройства и выполняет роль предохранителя. Основу блокинг-генератора составляют транзистор MJE13005 и импульсный трансформатор. Необходимым элементом, блокинг-генератора является цепь положительная обратная связь образована обмоткой 2 трансформатора, элементами R5, R4 C2.

Стабилитрон 5v6 ограничивает напряжение на базе транзистора MJE13005 в пределах пяти вольт.

Демпферная цепочка D3, C4, R6 ограничивают выбросы напряжения на обмотке 1 трансформатора. В момент запирания транзистора эти выбросы могут превышать напряжение питания в несколько раз, поэтому минимально допустимое напряжение конденсатора C4 и диода D3 должно быть не ниже 1 кВ.

ПРАКТИКА.

1. Разборка. Саморезы держащие крышку зарядного в данном устройстве имеют вид треугольной звездочки. Специальной отвертки под рукой как правило нет, поэтому приходится выкручиваться кто как может. Я откручивал отверткой, которая за время эксплуатации сама заточилась под всякие крестики.

Иногда зарядные собраны без болтов. В таком случае половинки корпуса склеены. Это говорит о невысокой стоимости и качестве устройства. Разбирать такое ЗУ чуть сложнее. Нужно раколоть корпус неострой отверткой, аккуратно надавливая на стык половинок.

2. Внешний осмотр платы. Более 50% дефектов можно обнаружить именно за счет внешнего осмотра. Сгоревшие резисторы, потемневшая плата укажут вам место дефекта. Лопнувший корпус, трещины на плате будут говорить о том что устройство роняли. Эксплуатируются зарядные в экстримальных условиях, поэтому падения отовсюду нередкая причина выхода из строя.

В пяти из десятка ЗУ которые довелось делать мне, были банально отогнуты контакты через которые 220 вольт поступают на плату.

Для исправления, достаточно чуть отогнуть контакты по направлению к плате.
Проверить контакты виноваты или нет, можно подпаяв к плате сетевой шнур, и замеряв напряжение на выходе — красный и черный провода.

3. Оборванный шнур на выходе ЗУ. Рвется как правило у самого штеккера или у основания зарядного. Особенно у любителей поговорить во время зарядки телефона.
Прозванивается прибором. В центр разъема вставляете вывод тонкой детали и измеряете сопротивление проводов.

4. Транзистор + резисторы. В случае если нет видимых повреждений, прежде всего нужно выпаять транзистор и прозвонить его. Нужно при этом иметь ввиду, что у транзистора
MJE13005 база находится справа, но бывает и наоборот. Транзистор может стоять другого типа, в другом корпусе. Допустим MJE13001 видом как советский кт209 с базой слева.

Вместо него я ставил MJE13003. Можно поставить транзистор из любой сгоревшей лампы — экономки. В них как правило сгорает нить накала самой колбы, а два высоковольтных транзистора остаются целыми.

5. Последствия перенапряжения. В простейшем случае выражаются в пробитых накоротко диоде D1 и оборванном резисторе R1. В более сложных случаях сгорает транзистор MJE13005 и раздувает конденсатор C1. Всё это элементарно меняется на такие же или подобные детали.

В последних двух случаях нужно будет кроме замены сгоревших проводников, проверить резисторы вокруг транзистора. Со схемой это будет несложно сделать.

Очень часто сталкиваюсь с ремонтом «не заряжающихся» телефонов Nokia . Хочется сразу отметить, что с увеличением модельного ряда и усовершенствованием схем зарядки, надежность их уменьшилась на порядок. Кто в своей практике не сталкивался с проблемой как понять заряжается телефон или нет?
Конечно это можно проверить по росту напряжения на самой аккумуляторной батарее, но этот способ довольно медленный и не всегда удается добраться до контактов батареи. Можно смотреть на бегающий значек зарядки на телефоне, и ждать когда же появится долгожданное сообщение «Зарядка завершена» или постоянно вынимать батарею и замерять появились ли заветные милливольты в ней...

Лично Я в основном произвожу контроль зарядки, по току потребляемому от зарядного устройства. Для этого у меня есть шнуры от сгоревших «китайских зарядок» , я уверен что у каждого мастера их предостаточно, которые я подключаю к лабораторному блоку питания с регулиремым напряжением и током. Для телефонов Nokia выставляю напряжение зарядки 5,7В а ток зарядки от 600 мА до 1100 мА . Не забывайте, что в современных телефонах этого бренда ограничение тока зарядки контролирует телефон, а вот в предыдущих моделях эту задачу выполнял и телефон и само зарядное устройство. Думаю что вы раньше сталкивались с такой проблемой, когда телефон напрочь отказывался заряжаться от «китайского зарядного» устройства а с оригинальным все было хорошо.

Ведь ни для кого не секрет, что стабильное напряжение и правильный ток зарядки каждого конкретного аккумулятора, это залог длительной и безотказной работы телефона. Но к сожалению не все это понимают, особенно «горе мастера» которые напрочь выкидывают всю цель зарядки и контроля тока, а в обход ставят перемычку с диодом напрямую от зарядного устройства на клемы аккумулятора. ЗАПОМНИТЕ, ТАК ДЕЛАТЬ НЕЛЬЗЯ!

Хотел бы немного облегчить процесс поиска и устранения неисправности, построив небольшой алгоритм работы:

  1. При поступлении к вам незаряжающегося телефона, проверьте целостность контактов зарядного и системного разъемов, в зависимости куда подключается зарядное устройство.
  2. Удостоверьтесь в исправности аккумуляторной батареи, о качественном контакте клемм и их не загрязненности.
  3. Произведите замер напряжения зарядки, применительно к телефонам Nokia это порядком 5,7 вольт.
  4. Проверьте целостность пайки системных и зарядных разъемов, очень часто новые разъемы «отваливаются» в местах их пайки появляются трещины, во первых от применения бессвинцовой пайки , во вторых от недоработанного крепления и в третьих от небрежного отношения к самому телефону, это как правило грубое подключение и отключение разъема зарядного устройства.
  5. Теперь перейдем к сообщениям которые выдает телефон при подключении зарядного устройства:
    • «Не заряжается» — как правило проблема с температурным датчиком, контроллер зарядки не может определить температуру аккумулятора и не допускает его перегрева. Как правило это терморезистор сопротивлением 47 кОм и расположен поблизости с аккумуляторной батареей.
    • «Зарядное устройство не поддерживается» — проблема связана с отклонением величины напряжения поступающего от зарядного устройства, и может быть вызвана «проседанием» напряжения на пассивных элементах — конденсаторах, защитных стабилитронах и варисторах.
  6. Но бывает такое что все проверно а телефон вообще не реагирует на подключение зарядного устройства, самой простой причиной этого может быть перегоревший предохранитель по цепи зарядки, но не стоит забывать что он мог перегореть не только по вине внешнего источника питания а и от внутренней неисправности контроллера зарядки или самого аккумулятора.
  7. Бывают случаи когда вроде все отлично, индикация есть телефон не выдает нестандартных сообщений, но что-то не то, прироста напряжения на батарее не происходит и потребления от источника токане происходит. Это может быть связано с неисправным датчиком тока который в большинстве телефонов установлен на плате а на некоторых моделях выполнен в виде печатных проводников во внутренних слоях платы. Конструктивно — резистор с маленьким переходным сопротивлением в десятки миллиом подключенный к отрицательному (минусовому) выводу аккумуляторной батареи и установлен в максимальной близости к разъему батареи.
  8. Очень часто проблема кроется в неисправном контроллере зарядки , проверить его возможно, только заменив на заведомо исправный.
  9. Еще бывают случаи программных ошибок, когда после разного рода стираний и перезаписей в памяти телефона стирают область PM в которой хранятся калибровки напряжений. Проверить это тоже можно прочитав подробную информацию о подключенном телефоне при помощи старого доброго UFS или любого другого программатора типа MX-key, JAF, Best, Fenix и т.п.

Конечно это далеко не полный перечень, того с чем можно столкнутся при поиске неисправности, но следую этому алгоритму вы сэкономите массу времени при ремонте. Если у Вас есть свои наработки в области поиска и устранения неисправности зарядки в телефонах Nokia я с удовольствием дополню статью и опубликую Ваши методы и приемы, для этого