Схемы ум вч для измерительных мостов. ВЧ-мост УКВ-диапазона

На рис.1 приведена схема ВЧ-моста, разработанная на основе конструкции UA9AA .


Рис.1

Как правило, навесной монтаж, применяемый при изготовлении моста, ограничивает диапазон рабочих частот подобных устройств значениями 140...150 МГц. Чтобы обеспечить работу в диапазоне 430 МГц, прибор целесообразно изготовить на двустороннем фольгированном текстолите. Один из удачных вариантов монтажа показан на рис.2 и 3.


Рис.2

На верхней стороне платы (рис.2) расположены два безындукционных резистора R1, R2 с компенсационными конденсаторами С4, С5. На нижней стороне (рис.3) размещаются остальные детали моста. Монтаж выполнен на "пятачках".


Рис.3

Расстояния между "пятачками" определяются размерами используемых деталей. Кружки, обозначенные на рисунках штриховыми линиями, соединены между собой через отверстия в плате.

При изготовлении моста особое внимание следует уделить качеству используемых деталей. Конденсаторы С1, С2 - керамические, безвыводные, типа К10-42, К10-52 или аналогичные. Опорный конденсатор С3 - КДО-2. Подстроечные конденсаторы С4, С5-типа КТ4-21, КТ4-25; остальные конденсаторы - КМ, КЦ. Резисторы R1, R2 должны быть типа МОН, С2-10, С2-33 мощностью 0,5 Вт и иметь одинаковое сопротивление в пределах 20...150 Ом. Если используются резисторы типа МОН, то выводы у них откусываются до основания, которое зачищается и залуживается, а затем припаивается к нужному "пятачку". Резистор R3 - типа СП4-1, СП2-36, безындукционный, с графитовой дорожкой. Этот резистор крепится на боковой стенке из фольгированного текстолита, однако фольга в месте его крепления удаляется. Корпус резистора не соединяется с общим проводом, иначе мост не удастся сбалансировать. Ручка, укрепляемая на оси резистора, должна быть изготовлена из изоляционного материала. Кроме резистора R3, на боковых стенках крепятся разъемы СР-50. Места соединения (стыки) между боковыми стенками и основной платой тщательно пропаиваются.

Мощность сигнала от генератора должна быть около 1 Вт. В качестве генератора могут использоваться, например, IC-706MK2G, варакторный утроитель и т.д.

При проверке балансировки ВЧ-моста в диапазонах VHF и UHF используются только безындукционные резисторы. Точной настройке компенсационных конденсаторов (при одном и том же сопротивлении нагрузки) соответствует неизменный баланс на нескольких диапазонах (например, 7...430 МГц). Если не удастся подобрать достаточное количество безындукционных резисторов для градуировки моста, промежуточные значения шкалы прибора можно отградуировать на НЧ-диапазонах, используя распространенные резисторы, например, типа МЛТ или МТ.

Для измерения реактивности нагрузки потребуется заменить конденсатор С5 переменным (с воздушным диэлектриком и максимальной емкостью около 20 пФ), однако верхний частотный предел измерений ограничен диапазоном 144 МГц, т.к. не удается полностью компенсировать емкость монтажа.

Если в приборе использовать дроссели индуктивностью 200 мкГн, частотный диапазон моста составит 0,1...200 МГц.

Предлагаемая конструкция имеет очень хорошую повторяемость, в отличие от устройств, выполненных с применением навесного монтажа.

Литература

  1. Ю.Селевко (UA9AA). Прибор для настройки антенн. Радиолюбитель, 1991, N5, С.32...34.

При разработке этого измерительного прибора ставилась цель изготовить портативную простую конструкцию, обладающую достаточной точностью для практической настройки разнообразных KB антенн и имеющую автономное питание.

Прибор позволяет производить следующие измерения:

1. Определять резонансную частоту антенной системы а также резонансные частоты элементов в нее входящих (вибратора, директоров. рефлектора) в диапазоне 31...2.5 МГц.
2. Измерять активную составляющую входного сопротивления антенны в пределах от 0 до 5000м.
3. Измерять реактивные составляющие входного сопротивления антенны.
4. Судить о КСВ антенны, имея в виду отношение волнового сопротивления фидеры.о входному сопротивлению антенны.
5. Определять нужную длину фазосдвигающих линий с волновым сопротивлением этих линий до 500 Ом, а также коэффициенты укорочения коаксиальных кабелей и линий.

Определение всех параметров, кроме реактивного сопротивления, производится путем непосредственного считывания со шкал прибора. Величина реактивной составляющей высчитывается по общеизвестным формулам.

Прибор состоит из двух частей: высокочастотного моста и диапазонного генератора, объединенных в одну законченную конструкцию.

ВЫСОКОЧАСТОТНЫЙ МОСТ
Схема, изображенная на рис. 1, представляет собой классическую схему измерительного моста на сопротивлениях (в одном из плеч этого моста находится переменное сопротивление R1 с проградуированной шкалой). Имеется также-переменный конденсатор С1 емкостью 160 пф с проградуирован-ной шкалой, который с помощью двух закорачивающих перемычек может подключаться либо параллельно к переменному сопротивлению, либо к входу моста, что позволяет сбалансировать его при наличии комплексного сопротивления. По величине емкости переменного конденсатора можно вычислить величину реактивной составляющей нагрузки.

Мост балансируется с помощью микроамперметра на 50 мкА, который включается в диагональ. Для регулировки чувствительности служит переменное сопротивление R5, кроме того. с помощью тумблера SA1 параллельно микроамперметру РА1 включается шунтирующее сопротивление R6, загрубляющее чувствительность индикатора.

Монтаж высокочастотной части моста ведется максимально короткими отрезками голого луженого провода диаметром 1,5мм (см. фото)

ДИАПАЗОННЫЙ ГЕНЕРАТОР
Диапазонный генератор (рис. 2) перекрывает диапазон частот от 2,5 до 31 МГц.



Диапазонный генератор состоит из задающего генератора, собранного по схеме емкостной трехточки на транзисторе КП302А. С помощью переключателя контуры включаются в цепь затвора. Весь диапазон генератора разбит на пять поддиапазонов с целью получения четкой градуировки шкалы. Следующий каскад на транзисторе КП302А является истоковым повторителем и служит для согласования с оконечным каскадом генератора, собранного на транзисторе КТ606А.

В коллекторную цепь этого каскада включен широкополосный трансформатор на ферритовом кольце, с обмотки связи которого высокочастотное напряжение подается непосредственно на мост.

Для надежной работы моста напряжение на обмотке связи должно быть 1..Д В. Нагрузка обмотки составляет 100 Ом, хотя баланс моста достигается и при меньших напряжениях.

КОНСТРУКЦИЯ И ДЕТАЛИ.

Сопротивление R2 и R3 типа МЛТ необходимо подобрать с точностью до 1%. Переменный конденсатор С1 - с воздушным диэлектриком максимальной емкостью 160пф.Триммеры С2 и СЗ- тоже с воздушным диэлектриком.

Дроссели Др1 и Др2 - трехсекционные на керамическом основании. Можно применить любые дроссели с индуктивностью 1 ...2,5 мГ. Необходимо, чтобы они имели минимальную собственную емкость и не имели реэонансов в диапазоне частот генератора.

Микроамперметр РА1 - типа М4205. В диапазонном генераторе применен переменный конденсатор С1 емкостью 50 пф с воздушным диэлектриком, снабженный верньером.

Трансформатор Тр1 намотан тремя проводами по 9 витков в каждой секции на кольце ВЧ50 диаметром 14 мм.

Наладку прибора необходимо начать с генератора, имеющего минимум гармоник, так как наличие их ведет к ошибкам при измерениях.

Необходимо тщательно подобрать с помощью конденсаторов СЗ и С4 связь контура с транзистором VT1, а также подобрать режимы работы этого транзистора и VT2 и VT3.

После наладки диапазонного генератора приступают к наладке высокочастотного моста. Для этого к входу моста X1 подключают постоянное сопротивление 100..150 Ом, гнезда А-В и С- D при этом должны быть разомкнуты. Частота генератора может быть установлена любой, например, 15 МГц. Затем переменным сопротивлением R1 балансируют мост при максимальной чувствительности индикатора. Показания индикатора при этом могут отличаться от нуля. Затем, вращая триммер СЗ, добиваются точного баланса моста. При правильном монтаже и одинаковой величине сопротивлений R2 и R3 стрелка индикатора должна быть на нуле. Допустимы толь о весьма незначительные отклонения. Этой операцией нейтрализуется емкость

переменного сопротивления и емкость монтажа противоположных плеч моста. После этого вставляются перемычки А - В и С - D. а конденсатор С1 устанавливается в положение минимальной емкости. Не трогая сопротивления R1, триммером С2 снова добиваемся балансировки моста - на шкале конденсатора С1 отмечаем нулевую точку. Этой операцией нейтрализуется начальная емкость конденсатора С1. От нулевой точки градуируем шкалу конденсатора С1 через каждые 10 пф. На этом наладка завершается.

ПОЛЬЗОВАНИЕ ПРИБОРОМ.

Для измерения резонансных частот антенной системы и ее элементов, а также входного сопротивления, прибор подключается непосредственно к входу антенны коротким отрезком коаксиального кабеля. Если это затруднительно - полуволновым (для настраиваемого диапазона) отрезком кабеля.

Такая длина соединительного кабеля необходима, поскольку полуволновая линия передает параметры нагрузки без трансформации.

Для определения резонансной частоты антенны и ее входного сопротивления устанавливаем величину переменного сопротивления R1 равную приблизительно величине волнового сопротивления применяемого филера и, меняя частоту диапазонного генератора. находим частоту на которой индикатор покажет резкое уменьшение показаний.

Затем, изменяя величину сопротивления R1 и емкости С1. а также корректируя частоту генератора. добиваемся полной балансировки моста. Если мост сбалансировался при нулевом положении конденсатора С1, то это означает, что антенна на данной частоте имеет чисто активное входное сопротивление, которое считывается со шкалы сопротивления R I. Если же для баланса потребовалось изменение конденсатора С1, то это означает, что нагрузка имеет реактивную составляющую тем большую, чем большую емкость пришлось вводить при балансировке.

Если мост сбалансировался при соединении перемычками гнезд А-В и С- D, то это означает, что реактивная составляющая имеет емкостной характер. А если при соединении гнезд А - С и В - D - то индуктивный характер.

Резонансные частоты директоров и рефлектора измеряются аналогичным образом, но при этом нужно в широких пределах менять величину сопротивления R1 для нахождения резонансной частоты. Балансировка на этой частоте может быть не столь резкой. как при определении резонансной частоты антенны. Кроме того нужно иметь в виду. что при настройке антенн типа HB9CV. имеющих ям элемента, будут четко выражены три частоты: короткого элемента - с частотой выше рабочей, длинного элемента - с частотой ниже рабочей и резко выраженная рабочая частота антенны.

Кроме рабочей частоты антенны и ее основных элементов, возможно появление резонансных частот бума, оттяжек и т.п.

Для определения коэффициента укорочения коаксиальных кабелей и линий используется свойство полуволновой линии передавать величину нагрузки без трансформации. Поэтому берем отрезок кабеля или линии и закорачиваем накоротко один из концов. Другой конец включаем к входу моста, установив при этом на "0" сопротивление R1 и конденсатор С1. Найдя резонансную частоту, при которой мост сбалансируется, будем иметь в виду, что для этой частоты данная линия имеет электрическую длину в половину волны. Затем, пересчитав частоту генератора в длину волны, находим искомую половину волны. Измерив геометрическую длину отрезка кабеля или линии и вычислив ее отношение к данной полуволне получим коэффициент укорочения.

Шумовой мост используется для измерения и тестирования параметров антенн, линий связи, определения характеристик резонансных цепей и электрической длины фидера. Шумовой мост, как следует из его названия, является устройством мостового типа. Источник шума генерирует шум в диапазоне от 1 до 30 МГц. С применением высокочастотных элементов этот диапазон расширяется, и при необходимости можно настраивать антенны диапазона 145 МГц.

Шумовой мост работает совместно с радиоприемником, который используется для детектирования сигнала. Подойдет также любой трансивер.

Принципиальная схема прибора приведена выше. Источником шума является стабилитрон VD2. Здесь следует отметить, что некоторые экземпляры стабилитронов недостаточно «шумят», и следует выбрать наиболее подходящий. Генерируемый стабилитроном шумовой сигнал усиливается широкополосным усилителем на транзисторах VT2, VT3. Число усилительных каскадов может быть уменьшено, если используемый приемник имеет достаточную чувствительность. Далее сигнал подается на трансформатор Т1. Он намотан на тороидальном ферритовом кольце 600 НН диаметром 16…20 мм одновременно тремя скрученными проводами ПЭЛШО диаметром 0,3…0,5 мм с намотанными 6 витками.

Регулируемое плечо моста составляют переменные резистор R14 и конденсатор С12. Измеряемое плечо - конденсаторы С10, С11 и подключаемая антенна с неизвестным импедансом. В измерительную диагональ подключается приемник в качестве индикатора. Когда мост разбалансирован, в приемнике слышен мощный равномерный шум. По мере настройки моста шум становится все тише и тише. «Мертвая тишина» свидетельствует о точной балансировке.

Следует отметить, что измерение происходит на частоте настройки приемника.

Размещение деталей:


Прибор конструктивно выполнен в корпусе размером 110x100x35 мм. На передней панели располагаются переменные резисторы R2 и R14, переменные конденсаторы С11 и С12 и выключатель напряжения питания.
Сбоку размещены разъемы для подключения радиоприемника и антенны. Питание прибора осуществляется от внутренней батареи или аккумулятора. Ток потребления - не более 40 мА.

Переменные резистор R14 и конденсатор С12 необходимо снабдить шкалами.

Настройка, балансировка и калибровка

Подключаем радиоприемник с отключенной системой АРУ к соответствующему разъему. Конденсатор С12 устанавливаем в среднее положение. Вращая резистор R2, следует убедиться, что генерируемый шум присутствует на входе приемника на всех диапазонах. К разъему «Антенна» подключаем безындукционные резисторы типа МЛТ или ОМЛТ, предварительно измерив их номиналы цифровым авометром. При подключении сопротивлений добиваемся вращением R14 резкого уменьшения уровня шума в приемнике.

Подбором конденсатора С12 минимизируем уровень шума и делаем отметки на шкале R14 в соответствии с подключенным образцовым резистором. Таким образом производим калибровку прибора вплоть до отметки 330 Ом.

Калибровка шкалы С12 несколько сложнее. Для этого поочередно подключаем к разъему «Антенна» параллельно соединенные резистор 100 Ом и емкость (индуктивность) величиной 20.. 70 пФ (0,2…1,2 мкГн). Добиваемся баланса моста установкой R14 на отметке 100 Ом шкалы и минимизацией уровня шума вращением С12 в обе стороны от положения «0». При наличии RC-цепочки ставим знак «-» на шкале, а при наличии RL-цепочки - знак «+». Вместо индуктивности можно присоединить конденсатор 100 .7000 пф, но последовательно с резистором 100 Ом.

Измерение импеданса антенны

R14 устанавливаем в положение, соответствующие импедансу кабеля - это для большинства случаев 50 или 75 Ом. Конденсатор С12 устанавливаем в среднее положение. Приемник настраиваем на ожидаемую резонансную частоту антенны. Включаем мост, выставляем некоторый уровень шумового сигнала. С помощью R14 настраиваемся на минимальный уровень шума, и с помощью С12 дополнительно понижаем шум. Эти операции проводим несколько раз, так как регуляторы влияют друг на друга. Настроенная в резонанс антенна должна иметь нулевое реактивное сопротивление, а активное сопротивление должно соответствовать волновому сопротивлению применяемого кабеля. В реальных антеннах сопротивления, как активное, так и реактивное, могут существенно отличаться от расчетных.

Определение резонансной частоты

Приемник настраивается на ожидаемую резонансную частоту. Переменный резистор R14 устанавливается на сопротивление 75 или 50 Ом.
Конденсатор С12 устанавливается в нулевое положение, а контрольный приемник перестраивается по частоте до получения минимального шумового сигнала.

Простой метод согласования КВ антенн в «холодном» режиме.
В настоящее настройка и согласование антенн проводится в основном с использованием КСВ-метров, когда на антенну подается довольно большая ВЧ мощность. При этом антенна ее излучает, а так как при настройке приходится несколько раз перестраивать передатчик в пределах диапазона работы антенны, создаются значительные помехи другим радиостанциям.

Между тем, есть еще один метод настройки антенн - с помощью ВЧ моста, он описан в известном всем справочнике Ротхаммеля. Но и в этом случае для работы моста требуется значительная мощность, которая может обеспечить достаточный ток в плечах моста.
Однако, если несколько модернизировать мост, то можно для настройки обойтись сигналом обычного ВЧ генератора сигналов, с напряжением на выходе 0,5 - 1 вольт. Но для этого необходимо, чтобы ВЧ сигнал был модулирован низкочастотным сигналом 400 -1000 гц, а ещу лучше чтобы генератор работал в режиме видеомодуляции импульсами такой частоты.
Такие режимы есть практически во всех современных генераторах сигналов.
Схема подключения для настройки антенны на нужную частоту и согласования ее с коаксиальным кабелем 50 ом приведена на рисунке. ВЧ генератор ставится в режим видеомодуляции или АМ с коэффициентом модуляции 100% и подключается к гнезду Х1, антенна - желательно сначала непосредственно - подключается к гнезду Х2. В гнезда ХТ подключаются головные телефоны.
Затем генератор настраивается на частоту работы антенны. Если при этом в наушниках слышится НЧ сигнал частоты модуляции генератора, значит, на данной частоте антенна имеет входное сопротивление, отличное от активного 50 ом. Перестраивая генератор по частоте в ту и другую сторону от установленной, добиваемся пропадания сигнала в наушниках. Это и будет частота, на которой входное сопротивление активное и равно 50 ом.
В зависимости от того, в какую сторону и насколько отличается эта частота от нужной, изменяем геометрические размеры антенны или данные согласующих элементов, и вновь проверяем частоту баланса моста. Добившись баланса на необходимой частоте, подключаем к антенне фидер 50 ом, и производим аналогичную проверку антенно - фидерного тракта полностью.
При исправном фидере и правильно проведенной настройке, после подключения фидера разницы в измерениях с фидером или без не наблюдается, а подключение КСВ метра показывает КСВ равный 1, или близкий к нему.
Данный метод испытан при настройки антенн до диапазана 14 мгц, настраивались как проволочные антенны на 160 и 80 метров, так и 4 элементная антенна на диапазон 20 метров.
Во всех случаях удавалось быстро и точно произвести настройку.

Шумовой мост, как следует из его названия, является устройством мостового типа. Источник шума генерирует шум в диапазоне от 1 до 30 МГц. С применением высокочастотных элементов этот диапазон расширяется, и при необходимости можно настраивать антенны диапазона 145 МГц. Шумовой мост работает совместно с радиоприемником, который используется для детектирования сигнала. Подойдет также любой трансивер.

Принципиальная схема прибора приведена на рис.1. Источником шума является стабилитрон VD2. Здесь следует отметить, что некоторые экземпляры стабилитронов недостаточно "шумят", и следует выбрать наиболее подходящий. Генерируемый стабилитроном шумовой сигнал усиливается широкополосным усилителем на транзисторах VT2, VT3.


Число усилительных каскадов может быть уменьшено, если используемый приемник имеет достаточную чувствительность. Далее сигнал подается на трансформатор Т1. Он намотан на тороидальном ферритовом кольце 600 НН диаметром 16...20 мм одновременно тремя скрученными проводами ПЭЛШО диаметром 0,3...0,5 мм; число витков -6.

Регулируемое плечо моста составляют переменные резистор R14 и конденсатор С12. Измеряемое плечо - конденсаторы С10, СИ и подключаемая антенна с неизвестным импедансом. В измерительную диагональ подключается приемник в качестве индикатора. Когда мост разбалансирован, в приемнике слышен мощный равномерный шум. По мере настройки моста шум становится все тише и тише. "Мертвая тишина" свидетельствует о точной балансировке. Следует отметить, что измерение происходит на частоте настройки приемника. Печатная плата и размещение деталей на ней приведены на рис.2.

Прибор конструктивно выполнен в корпусе размером 110х100х35 мм. На передней панели располагаются переменные резисторы R2 и R14, переменные конденсаторы С11 и С12 и выключатель напряжения питания. Сбоку - разъемы для подключения радиоприемника и антенны. Питание прибора осуществляется от внутренней батареи типа"Крона"или аккумулятора. Ток потребления - не более 40 мА.
Переменные резистор R14 и конденсатор С12 необходимо снабдить шкалами.

Настройка, балансировка и калибровка

Подключаем радиоприемник с отключенной системой АРУ к соответствующему разъему. Конденсатор С12 устанавливаем в среднее положение. Вращая резистор R2, следует убедиться, что генерируемый шум присутствует на входе приемника на всех диапазонах. К разъему "Антенна" подключаем безындукционные резисторы типа МЛТ или ОМЛТ, предварительно измерив их номиналы цифровым авометром. При подключении сопротивлений добиваемся вращением R14 резкого уменьшения уровня шума в приемнике.

Подбором конденсатора С12 минимизируем уровень шума и делаем отметки на шкале R14 в соответствии с подключенным образцовым резистором. Таким образом производим калибровку прибора вплоть до отметки 330 Ом.

Калибровка шкалы С12 несколько сложнее. Для этого поочередно подключаем к разъему "Антенна" параллельно соединенные резистор 100 Ом и емкость (индуктивность) величиной 20...70 пф (0,2...1,2 мкГн). Добиваемся баланса моста установкой R14 на отметке 100 Ом шкалы и минимизацией уровня шума вращением С 12 в обе стороны от положения "О". При наличии RC-цепочки ставим знак"-" на шкале, а при наличии RL-цепочки - знак "+". Вместо индуктивности можно присоединить конденсатор 100...7000 пф, но последовательно с резистором 100 Ом.

Измерение импеданса антенны

R14 устанавливаем в положение, соответствующие импедансу кабеля - это для большинства случаев 50 или 75 Ом. Конденсатор С12 устанавливаем в среднее положение. Приемник настраиваем на ожидаемую резонансную частоту антенны. Включаем мост, выставляем некоторый уровень шумового сигнала. С помощью R14 настраиваемся на минимальный уровень шума, и с помощью С12 дополнительно понижаем шум. Эти операции проводим несколько раз, так как регуляторы влияют друг на друга. Настроенная в резонанс антенна должна иметь нулевое реактивное сопротивление, а активное сопротивление должно соответствовать волновому сопротивлению применяемого кабеля. В реальных антеннах сопротивления, как активное, так и реактивное, могут существенно отличаться от расчетных.

Определение резонансной частоты

Приемник настраивается на ожидаемую резонансную частоту. Переменный резистор R14 устанавливается на сопротивление 75 или 50 Ом.

Конденсатор С12 устанавливается в нулевое положение, а контрольный приемник перестраивается по частоте до получения минимального шумового сигнала.