ШИМ, он же PWM. ШИМ-регулятор

Дорогой Бобот, не мог бы ты немного побольше рассказать об импульсах?

Хорошо, что ты попросил, дружище Бибот. Так как именно импульсы являются главными носителями информации в цифровой электронике, поэтому очень важно знать разные характеристики импульсов. Начнём, пожалуй, с одиночного импульса.

Электрический импульс - это всплеск напряжения или тока в определённом и конечном промежутке времени.

Импульс всегда имеет начало (передний фронт) и конец (спад).
Ты уже наверняка знаешь, что в цифровой электронике все сигналы могут быть представлены всего двумя уровнями напряжения: "логической единицей" и "логическим нулём". Это всего лишь условные величины напряжения. "Логической единице" приписывается высокий уровень напряжения, обычно около 2-3 вольт, "логическим нулём" считается близкое к нулю напряжение. Цифровые импульсы графически изображаются прямоугольными или трапециевидными по форме:

Главной величиной одиночного импульса является его длина. Длина импульса - это отрезок времени, в течение которого рассматриваемый логический уровень имеет одно устойчивое состояние. На рисунке латинской буквой t отмечена длина импульса высокого уровня, то есть логической "1". Длина импульса измеряется в секундах, но чаще в миллисекундах (мс), микросекундах (мкс) и даже наносекундах (нс). Одна наносекунда - это очень короткий отрезок времени!
Запомни: 1 мс = 0,001 сек.
1 мкс = 0,000001 сек
1 нс = 0,000000001 сек

Применяются также англоязычные сокращения: ms - миллисекунда, μs - микросекунда, ns - наносекунда.

За одну наносекунду я даже пикнуть не успею!
Скажи, Бобот, а что произойдёт, если импульсов будет много?

Хороший вопрос, Бибот! Чем больше импульсов, тем больше информации можно ими передать. У множества импульсов появляется много характеристик. Самая простая - частота следования импульсов.
Частота следования импульсов - это количество полных импульсов в единицу времени. За единицу времени принято брать одну секунду. Единицей измерения частоты является герц, по имени немецкого физика Генриха Герца . Один герц - это регистрация одного полного импульса за одну секунду. Если произойдёт тысяча колебаний в секунду будет 1000 герц, или сокращённо 1000 Гц, что равно 1 килогерцу, 1 кГц. Можно встретить и англоязычное сокращение: Hz - Гц. Частота обозначается буквой F .

Существуют ещё несколько характеристик, которые проявляются только при участии двух и более импульсов. Одним из таких важных параметров импульсной последовательности является период.
Период импульсов - это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T .


Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: T=1/F
Если длина импульса t точно равна половине периода T , то такой сигнал часто называют "меандр ".

Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S=T/t Скважность - безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle, это так называемый коэффициент заполнения.
Коэффициент заполнения D является величиной, обратной скважности. Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S

Дорогой Бобот, так много разного и интересного у простых импульсов! Но потихоньку я уже начинаю путаться.

Дружище, Бибот, это ты верно заметил, импульсы - не так уж и просты! Но осталось совсем чуть-чуть.

Если ты меня внимательно слушал, то ты мог заметить, что если увеличивать или уменьшать длину импульса и при этом на столько же уменьшать или увеличивать паузу между импульсами, то период следования импульсов и частота останется неизменной! Это очень важный факт, который нам ещё не раз понадобится в будущем.

Но сейчас ещё хочется добавить другие способы передачи информации с помощью импульсов.
Например, можно несколько импульсов объединить в группы. Такие группы с паузами определённой длины между ними называют пачками или пакетами. Генерируя разное число импульсов в группе и варьируя его, можно также передавать какую-либо информацию.


Для передачи информации в цифровой электронике (ещё её называют дискретной электроникой) можно использовать два и более проводников или каналов с разными импульсными сигналами. При этом информация передаётся с учётом определённых правил. Такой метод позволяет заметно увеличить скорость передачи информации или добавляет возможность управлением потоком информации между различными схемами.

Перечисленные возможности передачи информации с помощью импульсов могут быть использованы как сами по себе раздельно, так и в комбинации между собой.
Существуют также множество стандартов передачи информации с помощью импульсов, например I2C, SPI, CAN, USB, LPT.

Непонимание работы ШИМ или PWM (Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постояннымнапряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна:

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности.Здесь R - величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3V при токе нагрузки 10A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

P max = I x U нас

U нас для современных полупроводниковых коммутаторов приближается к 0,3v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

В ШИМ в качестве ключевых элементов использует полупроводниковые приборы в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю.
Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю - выделяемая мощность также мала.
В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность выделяемая в ключе значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция - управление средним значением напряжения на интегрирующей нагрузке путём изменения скважностиимпульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.

Рисунок 1

Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение - эквивалентное постоянное напряжение изменяется в зависимости от скважности (Q ) импульсов.

Q = t и /T < 1

здесь: Q - скважность, t и - длительность импульса, T - период следования импульсов.

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв - эквивалентное постоянное напряжение (Вольт ), Q - скважность, E - напряжение источника от которого запитан ШИМ преобразователь (Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв. При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

P max = Q х I x U нас

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.


Рисунок 2

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

В статье "Переходник для вентилятора 3 pin на 4 pin" http://de1fer.ru/?p=45#more-45 владелец блога приводит схему вентилятора с P WM .


Рисунок 3

здесь: GND - земля (общий), Control - контакт P WM управления, +12 - напряжение питания, Sense - вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4.Да и судя по параметрам транзистора "PWM" он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.


Рисунок 4

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

Pc max Ucb max Uce max Ueb max Ic max Tj max, °C Ft max
800mW 100V 80V 5V 1A 150°C 200MHz

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Есть другой вариант схемы вентилятора с P WM на форуме Radeon.ru


Рисунок 5

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит - надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены - то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM - токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM - ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM - ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

Гасящим резисторам и реостатам сейчас можно сказать - прощай!

подготовил А.Сорокин,

Схема регулятора основанного на широтно-импульсной модуляции или просто , может быть использована для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала при помощи ШИМ дает большую производительность, чем при использовании простого изменения постоянного напряжения подаваемого на двигатель.

Шим регулятор оборотов двигателя

Двигатель подключен к полевому транзистору VT1, который управляется ШИМ мультивибратором, построенным на популярном таймере NE555. Из-за применения схема регулирования оборотов получилась достаточно простой.

Как уже было сказано выше, шим регулятор оборотов двигателя выполнен с помощью простого генератора импульсов вырабатываемого нестабильным мультивибратором с частотой 50 Гц выполненного на таймере NE555. Сигналы с выхода мультивибратора обеспечивают смещение на затворе MOSFET транзистора.

Длительность положительного импульса можно регулировать переменным резистором R2. Чем больше ширина положительного импульса поступающего на затвор MOSFET транзистора, тем больше мощность поступает на двигатель постоянного тока. И наоборот чем уже ширина его, тем меньше мощности передается и как следствие понижаются обороты двигателя . Данная схема может работать от источника питания в 12 вольт.

Характеристики транзистора VT1 (BUZ11):

  • Тип транзистора: MOSFET
  • Полярность: N
  • Максимальная рассеиваемая мощность (Вт): 75
  • Предельно допустимое напряжение сток-исток (В): 50
  • Предельно допустимое напряжение затвор-исток (В): 20
  • Максимально допустимый постоянный ток стока (А): 30
  • Сопротивление сток-исток открытого транзистора (мОм) : 40

Источник: www.schematiccircuit.com

Портативный USB осциллограф, 2 канала, 40 МГц....

Шагомер, расчет калорий, мониторинг сна, контроль сердечного ритма...

Простое решение для вашей задачи!

Есть в наличии

Купить оптом

Модуль построен на базе мощного силового ключа IRF2204 с рабочим током до 210А, и предназначен для регулировки яркости ламп накаливания, светодиодных лент и частоты вращения электродвигателей напряжением 6-30В.

Будет полезен для регулировки яркости дневных ходовых огней и будет незаменим для регулировки оборотов печки, а так же в качестве регулятора скорости надувной лодки с электромотором.

Регулировка частоты ШИМ управления позволит полностью убрать гул обмоток двигателя, а встроенная защита ограничит превышение рабочего тока.

Технические характеристики

Особенности

  • Компактный размер
  • Широкий диапазон плавной регулировки частоты ШИМ - 300-10000Гц.
  • Широкий диапазон рабочего напряжения 6-30В
  • Возможность ограничения рабочего тока.
  • Защита от неправильного подключения полярности.
  • Построен на базе мощного полевого ключа IRF2204
  • Предусмотрена возможность усиления силового ключа.

Дополнительная информация

При токе боле 5А необходима установка радиатора. При максимальном токе 80А площадь радиатора должна составлять не менее 600 см2.

Статьи

Комплект поставки

  • Модуль - 1 шт.
  • Инструкция - 1 шт.

Что потребуется для сборки

  • Для подключения понадобится: провод, отвертка, бокорезы.

Подготовка к эксплуатации

  • Подключите лампу накаливания, напряжением 12В, к клемме OUT.
  • Подайте питание 12В на клемму IN
  • Вращайте переменный резистор. При вращении должна меняться яркость свечения лампы.
  • Проверка завершена. Приятной эксплуатации.

Условия эксплуатации

  • Температура -30С до +50С. Относительная влажность 20-80% без образования конденсата.

Меры предосторожности

  • Не превышайте максимально допустимое напряжение питания модуля.
  • Не превышайте максимально допустимую мощность нагрузки.
  • Не соблюдение данных требований может привести к выходу устройства из строя.

Вопросы и ответы

  • Добрый день. Вопрос по MP4511 ШИМ регулятор мощности 6-35В 80А Задача собрать электросамокат и электромобиль ребенку. Для этого есть двигатель на 90 Вт 24 В 7 А для самоката и двигатель на 110 ВТ от печки Газ на 15А 12 В и аккумулятор. Прошу подтвердить правильно ли я понял. данного устройства будет достаточно для регулирования оборотов?! т.к. на сайтах самодельщиков все заказывают китайские контроллеры, а с применением данного устройства что то никто не собирает. Или нужно будет что то еще включить в цепь. Так же прошу сообщить стоимость доставки до Оренбурга, получение на почте?! или транспортная компания до по адресата?! Спасибо.
    • Здравствуйте, Виктор! MP4511 - хороший выбор, этот модуль будет работать с Вашим мотором без каких-либо дополнительных устройств. По поводу доставки: мы работаем со службой СПСР, стоимость доставки до Вашего города рассчитывается после оформления заказа.
  • возможно ли заказать 12(24)-60В 80А???
    • Владимир, к сожалению, модуля с такими параметрами у нас в продаже нет.
  • Здравствуйте. Для плавной регулировки скорости детского электромобиля хочу использовать данный прибор, скажите, можно ли использовать с ним электронную педаль от приоры (вместо подстроечного резистора). Есть ли альтернатива этой педали меньшего размера?
    • Здравствуйте! Я не знаю, на каком принципе работает электронная педаль Приоры. Если там переменный резистор сопротивлением 100...500 кОм - то подойдёт.
  • Добрый день. купил модуль мр4511 80а. пролежал полгода без дела, а сегодня понадобился. Необходимо напряжение с аккумулятора шуроповерта понизить с 22 до 18 вольт. Подключаю аккумулятор и на входе регулятора вижу напряжение 6,7 вольт. нагрузка отключена. Подключаю для пробы нагрузку лампу 12 вольт 5 ватт напряжение на выходе не более 2,3 вольта. Схемы нет. Куда копать. Можете ли выслать схему. С уважением Алексей.
    • Проверьте наличие установленных перемычек. И качество пайки всех компонентов.
  • Здравствуйте. Хочу использовать данный модуль в авто. Чтобы после замены лампочек на светодиоды использовать данный ШИМ регулятор (подключить к старому резисторному 6...12В). Нужно ли мне менять дополнительно базовую схему или оставить всё как есть?
    • Модуль не подойдет для вашей задачи. Поптому-что регулировка производится по цепи -12В
  • Можно ли подключить электр. лодочный мотор ECO MOTOR PRO NISSAMARAN 36, если да, то как это сделать. Нужен ли шунт, где его достать и как устранить свист мотора если будет. Нужно ли ставить паралельно мотора силовой диод и какой лучше. Обороты регулируются с 0?
    • Можно. В установки ШУНТА необходимости нет. Установите в место него перемычку. Частоту ШИМ генератора установите в положении Hi. Если остаточный свист обмоток будет мешать, попробуйте поднять частоту ШИМ генератора до 20 КГц. Для этого поменяйте номинал резистора R1 на 510 Ом, R5 на 10 кОм, R8 на 4,7 кОм. Для облегчения работы силового ключа рекомендуем установить параллельно дополнительный, на плате предусмотрено место и обозначено как VT2. Силовые ключи должны быт установлены на радиатор площадью не менее 1000 см2..jpg
  • Получил регулятор мощности, подскажите пожалуйста, как мастерить радиатор если элементов, через которые должно отводиться тепло на плате два, а не один, как на картинке, и между ними НАПРЯЖЕНИЕ! Т,е я не смогу подсоединить их к одному радиатору, потому что коротнет, а два радиатора на каждый не получится, потому что расстояние между ними 1 мм!!!
    • Элементы необходимо устанавливать на радиатор через термопродящую пластину. В некоторых случаях элемент VD2, имеющий два вывода, не требует установку на радиатор. Проверьте если он не греется просто отогните его от радиатора.
  • Какой радиатор необходим? Максимальный ток 5А.
    • Sl-01H будет оптимален https://сайт/shop/1920368
  • Есть ли для него коробочка?
    • Специального корпуса для устройства нет. Универсальный корпус можно подобрать тут https://сайт/shop/cases
  • Здравствуйте! Хотел приобрести ШИМ 4511 цена 1030 доставка 850р. почему так дорого? Город Нальчик, Кабардино-Балкарская республика. Почтой нет возможности отправить?
    • Добрый день. Для отправки Почтой России Заполните все поля в корзине, и выберете онлайн оплату.Почтой России доставляются только оплаченные заказы. Доставка наложенным платежом не осуществляется!
  • Доброе время суток. Скажите данный регулятор можно использовать для регулировки накала нихрома подключив его к выходам блока питания ПК. Случайно купил регулятор частоты, он не снижает напряжение)
    • Можно
  • Здравствуйте, вопрос по мр4511. Использую для регулировки накалатнихромовой проволоки. Питание от БП компьютера. Подключаю на шим минус, +12в с выходного минуса к нихрому и второй конец проволоки к 5 в Блока питания. Все работает но пищат обмотки трансформатора БП. Как можно убрать это? Просто от 5 в шим не работает. Приходиться так. Может как то перемычки переставить
    • Это не всегда возможно, так как напрямую зависит от особенностей катушек трансформатора и электродвигателя. Тем не менее шум обмоток можно убрать или уменьшить с помощью регулятора частоты ШИМ генератора на модуле.
  • Здравствуйте! Как сделать что бы вентилятор не свистел при снижении оборотов?
    • Это не всегда возможно, так как напрямую зависит от особенностей обмоток трансформатора и электродвигателя. Тем не менее можно попробовать изменить номинал резистора R1 на 510 Ом, R5 на 10 кОм, R8 на 4,7 кОм.
  • Выдержит ли этот регулятор 500 вт и 37 вольт
    • 500Вт выдержит, а вот напряжение 37В будет на возможном пределе микросхемы линейного стабилизатора. Какая попадется микросхема. Если параметр будет занижен может сгореть.
  • Добрый день! Скажите, можно ли этим устройством управлять через "Ардуино нано" по аналоговому выходу 0 - +5В, через транзистор, для смены полюсовки и подключив вместо потенциометра?
    • В теории возможно, нужно пробовать.

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными - ШИМ (широтно-импульсно модулируемые ) регуляторы. Схема универсальная - она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Указанная схема отлично работает, прилагается.

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 - 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума - открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю - система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.

Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда - меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.

Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел - подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.